domingo, 1 de junio de 2014

INSTITUTO TECNOLÓGICO DE ACAPULCO

INGENIERÍA DE CONTROL CLÁSICO

UNIDAD 6

INTEGRANTES DEL EQUIPO:

*JOSE EDUARDO GARCÍA FLORES "JEFE DE EQUIPO" "10320564"

*ÁNGEL SALVADOR GALEANA ARCOS


6.1 Control de velocidad de un motor en lazo cerrado

Un sistema de control de lazo cerrado es necesario para automatizar el monitoreo y mantenimiento de una variable de proceso. Un ejemplo de un sistema de control de lazo cerrado es el control de velocidad, una característica estándar en la mayoría de los automóviles. El conductor proporciona el punto de referencia o velocidad deseada y el sistema de control monitorea la velocidad actual y ajusta el acelerador del motor como corresponde. Por ejemplo, la lógica del sistema de control estipula qué tan rápido el automóvil regresa a la velocidad después de pasar una colina y la sintonización de esta relación optimiza el rendimiento del motor y la eficiencia de la gasolina. Este módulo ilustra cómo implementar un algoritmo de control PID en el software NI LabVIEW.




6.1.1 Implementación de un control 

proporcional

Implementación del controlador
Iniciaremos con la implementación de un controlador proporcional análogo para lo cual nos guiaremos del diagrama de bloques mostrado en la figura 6.
Figura 6. Diagrama de bloques del sistema de posición en lazo cerrado

El primer elemento que debemos construir es el sumador, el cual estará compuesto por un amplificador operacional y resistencias eléctricas, elementos de fácil consecución y bajo costo. Como este documento se ha elaborado pensado en que el lector tiene muy poco o ningún conocimiento de electrónica, describiremos en forma muy sencilla cada elemento constitutivo.
6.1.2 Implementación de un control Proporcional Integral

Para el correcto funcionamiento de un controlador PID que regule un proceso o sistema se necesita, al menos:
  1. Un sensor, que determine el estado del sistema (termómetro, caudalímetro, manómetro, etc).
  2. Un controlador, que genere la señal que gobierna al actuador.
  3. Un actuador, que modifique al sistema de manera controlada (resistencia eléctrica, motor, válvula, bomba, etc).
El sensor proporciona una señal analógica o digital al controlador, la cual representa el punto actual en el que se encuentra el proceso o sistema. La señal puede representar ese valor en tensión eléctrica, intensidad de corriente eléctrica o frecuencia. En este último caso la señal es de corriente alterna, a diferencia de los dos anteriores, que también pueden ser con corriente continua.
El controlador lee una señal externa que representa el valor que se desea alcanzar. Esta señal recibe el nombre de punto de consigna (o punto de referencia), la cual es de la misma naturaleza y tiene el mismo rango de valores que la señal que proporciona el sensor. Para hacer posible esta compatibilidad y que, a su vez, la señal pueda ser entendida por un humano, habrá que establecer algún tipo de interfaz (HMI-Human Machine Interface), son pantallas de gran valor visual y fácil manejo que se usan para hacer más intuitivo el control de un proceso.
El controlador resta la señal de punto actual a la señal de punto de consigna, obteniendo así la señal de error, que determina en cada instante la diferencia que hay entre el valor deseado (consigna) y el valor medido. La señal de error es utilizada por cada uno de los 3 componentes del controlador PID. Las 3 señales sumadas, componen la señal de salida que el controlador va a utilizar para gobernar al actuador. La señal resultante de la suma de estas tres se llama variable manipulada y no se aplica directamente sobre el actuador, sino que debe ser transformada para ser compatible con el actuador utilizado.
Las tres componentes de un controlador PID son: parte Proporcional, acción Integral y acción Derivativa. El peso de la influencia que cada una de estas partes tiene en la suma final, viene dado por la constante proporcional, el tiempo integral y el tiempo derivativo, respectivamente. Se pretenderá lograr que el bucle de control corrija eficazmente y en el mínimo tiempo posible los efectos de las perturbaciones.

El modo de control Integral tiene como propósito disminuir y eliminar el error en estado estacionario, provocado por el modo proporcional. El control integral actúa cuando hay una desviación entre la variable y el punto de consigna, integrando esta desviación en el tiempo y sumándola a la acción proporcional. El error es integrado, lo cual tiene la función de promediarlo o sumarlo por un período determinado; Luego es multiplicado por una constante I. Posteriormente, la respuesta integral es adicionada al modo Proporcional para formar el control P + I con el propósito de obtener una respuesta estable del sistema sin error estacionario.
El modo integral presenta un desfasamiento en la respuesta de 90º que sumados a los 180º de la retroalimentación ( negativa ) acercan al proceso a tener un retraso de 270º, luego entonces solo será necesario que el tiempo muerto contribuya con 90º de retardo para provocar la oscilación del proceso. <<< la ganancia total del lazo de control debe ser menor a 1, y así inducir una atenuación en la salida del controlador para conducir el proceso a estabilidad del mismo. >>> Se caracteriza por el tiempo de acción integral en minutos por repetición. Es el tiempo en que delante una señal en escalón, el elemento final de control repite el mismo movimiento correspondiente a la acción proporcional.
El control integral se utiliza para obviar el inconveniente del offset (desviación permanente de la variable con respecto al punto de consigna) de la banda proporcional.
La fórmula del integral está dada por: I_{\mathrm{sal}}=K_{i}\int_{0}^{t}{e(\tau)}\,{d\tau}
Ejemplo: Mover la válvula (elemento final de control) a una velocidad proporcional a la desviación respecto al punto de consigna (variable deseada ).

Por tener una exactitud mayor a los controladores proporcional, proporcional derivativo y proporcional integral se utiliza en aplicaciones más cruciales tales como control de presión, flujo, fuerza, velocidad, en muchas aplicaciones química, y otras variables. Además es utilizado en reguladores de velocidad de automóviles (control de crucero o cruise control), control de ozono residual en tanques de contacto.

EJEMPLOS PRÁCTICOS

Se desea controlar el caudal de un flujo de entrada en un reactor químico. En primer lugar se tiene que poner una válvula de control del caudal de dicho flujo, y un caudalímetro, con la finalidad de tener una medición constante del valor del caudal que circule. El controlador irá vigilando que el caudal que circule sea el establecido por nosotros; en el momento que detecte un error, mandará una señal a la válvula de control de modo que esta se abrirá o cerrará corrigiendo el error medido. Y tendremos de ese modo el flujo deseado y necesario. El PID es un cálculo matemático, lo que envía la información es el PLC.

Se desea mantener la temperatura interna de un reactor químico en su valor de referencia. Se debe tener un dispositivo de control de la temperatura (puede ser un calentador, una resisténcia eléctrica,...), y un sensor (termómetro). El P, PI o PID irá controlando la variable (en este caso la temperatura). En el instante que esta no sea la correcta avisará al dispositivo de control de manera que este actúe, corrigiendo el error. De todos modos, lo más correcto es poner un PID; si hay mucho ruido, un PI, pero un P no nos sirve mucho puesto que no llegaría a corregir hasta el valor exacto.

APLICACIONES / EJEMPLO

Un ejemplo muy sencillo que ilustra la funcionalidad básica de un PID es cuando una persona entra a una ducha. Inicialmente abre la llave de agua caliente para aumentar la temperatura hasta un valor aceptable (también llamado "Setpoint"). El problema es que puede llegar el momento en que la temperatura del agua sobrepase este valor así que la persona tiene que abrir un poco la llave de agua fría para contrarrestar el calor y mantener el balance. El agua fría es ajustada hasta llegar a la temperatura deseada. En este caso, el humano es el que está ejerciendo el control sobre el lazo de control, y es el que toma las decisiones de abrir o cerrar alguna de las llaves; pero no sería ideal si en lugar de nosotros, fuera una máquina la que tomara las decisiones y mantuviera la temperatura que deseamos?
Esta es la razón por la cual los lazos PID fueron inventados. Para simplificar las labores de los operadores y ejercer un mejor control sobre las operaciones. Algunas de las aplicaciones más comunes son:
  • Lazos de Temperatura (Aire acondicionado, Calentadores, Refrigeradores, etc.)
  • Lazos de Nivel (Nivel en tanques de líquidos como agua, lácteos, mezclas, crudo, etc.)
  • Lazos de Presión (para mantener una presión predeterminada en tanques, tubos, recipientes, etc.)
  • Lazos de Flujo (mantienen la cantidad de flujo dentro de una línea o tubo).

6.1.3 Implementación de un control 

Proporcional Integral Derivativo





1 comentario:

  1. The Wizard of Vegas Casino Review - Dr.MCD
    The Wizard of Vegas Casino Review. 강원도 출장안마 This casino 청주 출장마사지 is owned by Caesars Entertainment and is 충주 출장안마 part of the Caesars Entertainment family. Rating: 4 · 구미 출장샵 ‎Review by 광양 출장안마 Dr.MCD

    ResponderBorrar